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Abstract We present numerical methods to solve the Israel–
Stewart (IS) equations of causal relativistic dissipative fluid
dynamics with bulk and shear viscosities. We then test these
methods studying the Riemann problem in (1 + 1)- and (2 +
1)-dimensional geometry. The numerical schemes investi-
gated here are applicable to realistic (3 + 1)-dimensional
modeling of a relativistic dissipative fluid.

PACS 24.10.Nz · 25.75.-q · 47.11.-j · 47.75.+f

1 Introduction

The interest in modeling the evolution of matter created
in relativistic heavy-ion collisions with fluid dynamics has
never ceased since the pioneering works by Landau [1]. Re-
cent remarkable discoveries at the Relativistic Heavy Ion
Collider (RHIC) at Brookhaven National Laboratory pro-
vide evidence for an almost “perfect” fluid-like behavior of
the QCD matter created [2].

In a perfect, or ideal, fluid, transport coefficients like bulk
and shear viscosity and heat conductivity vanish. This is an
idealized situation; in a real fluid one can show that there are
lower bounds for these transport coefficients, for instance
using the uncertainty principle [3] or applying the AdS/CFT
conjecture [4]. In order to decide how close to a perfect fluid
the matter created at RHIC is, one has perform theoretical
calculations in the framework of causal relativistic dissipa-
tive fluid dynamics. In this way, one may also be able to
extract the numerical values for the bulk and shear viscosity
coefficients from experimental measurements.

Currently the most widely accepted and studied theory
of relativistic dissipative fluid dynamics is due to Israel and
Stewart [5–8]. This is the relativistic version of the pioneer-
ing work by Müller [9, 10]. Although these theories have
been developed in the 1970s, efforts to study and apply
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them to relativistic heavy-ion collisions have only started
very recently [11, 12]. This has been followed by an im-
pressive number of studies in (1 + 1)-dimensional [13–16]
and (2 + 1)-dimensional geometries [17–24].

In 3+1 dimensions, given arbitrary initial conditions and
a general equation of state, the only way to solve the equa-
tions of relativistic fluid dynamics is by means of numerical
methods. Any numerical method requires an algorithm that
has to be tested in order to assess its validity for solving
the underlying equations. Testing algorithms to solve rela-
tivistic dissipative fluid dynamics is made difficult by the
fact that there is only a rather limited number of test cases
with analytical solutions. Reference [14] investigated sound
propagation for the linearized IS equations. The algorithm
of Ref. [21] was checked, for certain expansion scenarios,
as to whether it correctly approaches the Navier–Stokes and
ideal-fluid limits. So far, however, numerical algorithms to
solve the IS equations have not been tested in situations
where shock discontinuities occur in the ideal-fluid limit.
The present paper, in which we perform an extensive study
of the relativistic Riemann problem in 1 + 1 and 2 + 1 di-
mensions, aims to fill this gap.

In Sect. 2 we provide a short review of IS theory of dis-
sipative fluid dynamics. In Sect. 3 we formulate it in a form
suitable for numerical implementation. This is followed in
Sect. 4 by an introductory presentation to the numerical
methods which we use to solve the IS equations. In Sect. 5
we report results of solving the Riemann problem in 1 + 1
and 2 + 1 dimensions. Section 6 concludes this work with a
summary of our results and an outlook.

2 Dissipative fluid dynamics

2.1 Units and definitions

Throughout this work natural units, � = c = kB = 1, are
used. Components of contravariant vectors and tensors in
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4-dimensional space-time are denoted by upper indices, i.e.,
Aμ and Aμν . Greek indices take values from 0 to 3 and Ro-
man indices from 1 to 3. Covariant components, denoted by
lower indices, are obtained by Aν ≡ gμνA

μ, where gμν is
the metric tensor, for which we use the (+,−,−,−) con-
vention. If not stated otherwise the Einstein summation con-
vention is used for both Greek and Roman indices.

For an arbitrary contravariant four-vector Aμ the covari-
ant derivative is defined as

A
μ

;α ≡ ∂αAμ + �
μ
αβAβ, (1)

where �
μ
αβ ≡ 1

2 gμν(∂βgαν + ∂αgνβ − ∂νgαβ) denotes the
Christoffel symbol of the second kind and ∂α = ∂/∂xα de-
notes the four-derivative. Similarly, the covariant derivative
of covariant vectors is given by Aμ;α ≡ ∂αAμ −�

β
μαAβ . For

scalars the covariant derivative reduces to the ordinary four-
derivative. The covariant derivative of second-rank con-
travariant tensors is

A
μν

;α ≡ ∂αAμν + �
μ
αβAβν + �ν

αβAμβ. (2)

Vectors and tensors can be decomposed into parts paral-
lel and orthogonal to the four-velocity of matter uμ, where
uμuμ = 1. Using the transverse projection operator �μν ≡
gμν − uμuν where �μνuν = 0, an arbitrary four-vector can
be written as Aμ = uμuαAα +�μαAα . The covariant deriv-
ative of an arbitrary tensor can be decomposed as

A
μ1...μn

;α ≡ uαDAμ1...μn + ∇αAμ1...μn, (3)

where the convective time derivative D and the spatial gra-
dient operator ∇α are given by

DAμ1...μn ≡ uβA
μ1...μn

;β , (4)

∇αAμ1...μn ≡ �β
αA

μ1...μn

;β . (5)

It is convenient to define the traceless and symmetric pro-
jection of a tensor field, which is orthogonal to uμ. This is
denoted by angular brackets 〈〉,

A〈μν〉 ≡ 1

2
�μα�νβ(Aαβ + Aβα) − 1

3
�μν�αβAαβ. (6)

The covariant derivative of the four-velocity can be gener-
ally decomposed as

uν;μ = uμDuν + σμν + 1

3
�μνθ − ωμν, (7)

where the expansion rate θ , the shear tensor σμν , and the
vorticity tensor ωμν are defined as

θ ≡ ∇μuμ = ∂μuμ + �μ
αμuα, (8)

σμν ≡ ∇〈μuν〉 = 1

2
�μα�νβ(uα;β + uβ;α) − θ

3
�μν

= 1

2

(
∂μuν − uμuα∂αuν + ∂νuμ − uνuα∂αuμ

)

+ 1

2

(
�μαuβ�ν

αβ + �ναuβ�
μ
αβ

) − θ

3
�μν, (9)

ωμ
ν ≡ 1

2
�μα�β

ν (uα;β − uβ;α)

= 1

2

(
∂νu

μ − ∂μuν + uμuα∂αuν − uνu
α∂αuμ

)
, (10)

where σμνuν = 0 and ωμνuν = 0.

2.2 The equations of causal relativistic dissipative fluid
dynamics

The basic quantities characterizing dissipative fluids are
the net charge current Nμ and the energy–momentum ten-
sor T μν . Following Refs. [25–28] these can be decomposed
with respect to the fluid four-velocity uμ as

Nμ ≡ Nμ
eq + δNμ = nuμ + V μ, (11)

T μν ≡ T μν
eq + δT μν = euμuν − (p + Π)�μν

+ Wμuν + Wνuμ + πμν, (12)

where n ≡ Nμuμ is the net charge density and e ≡ uμT μνuν

is the energy density in the local rest frame (LRF), i.e.,
where uμ = (1,0,0,0). The charge diffusion current is
given by δNμ ≡ V μ = Nν�

μν . The energy–momentum
flow orthogonal to uμ is given by Wμ ≡ �μαTαβuβ . This
quantity can be decomposed as Wμ ≡ qμ + (e + p)V μ/n,
where qμ is the heat flow. The local isotropic pressure is
denoted by p + Π ≡ − 1

3�μνT
μν , where p is the equilib-

rium pressure and Π is the bulk viscous pressure measuring
the deviation from the local equilibrium pressure. The shear
stress tensor is defined as πμν ≡ T 〈μν〉. This representation
is completely general, valid in any coordinate system, and
independent of the definition of the flow velocity.

Usually, there are two typical choices used to define the
flow velocity: either tied to the net charge flow when V μ = 0
(Eckart frame) or tied to the energy flow when Wμ = 0
(Landau frame). We will use the latter definition in this
work.

Without conserved charges only Landau’s definition of
the flow velocity is appropriate. In this case the heat flow is
qμ = −(e + p)V μ/n. For net charge-free matter, qμ is not
well defined, but also irrelevant for the discussion, so we set
it to zero, qμ = V μ = 0.

When all dissipative quantities are zero, V μ = Wμ =
Π = πμν = 0, the decompositions (11) and (12) reduce
to perfect-fluid form, Nμ = N

μ
eq ≡ nuμ and T μν = T

μν
eq ≡

euμuν − p(e,n)�μν . The LRF energy and charge densities
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are always fixed to their equilibrium values by the Landau
matching conditions, i.e., n = neq, and e = eeq. Then, the
equilibrium pressure is given by the equation of state (EOS)
p = p(e,n) ≡ − 1

3�μνT
μν
eq .

The equations of relativistic dissipative fluid dynamics
follow from the covariant differentiation of the conserved
charge four-current and the energy–momentum tensor,

N
μ

;μ ≡ 1√
g

∂μ

(√
g Nμ

) = 0, (13)

T
μν

;μ ≡ 1√
g

∂μ

(√
g T μν

) + �ν
μβT μβ = 0, (14)

where g ≡ −det(gμν) is the negative determinant of the met-
ric tensor.

The non-equilibrium entropy current can be written as

Sμ ≡ Sμ
eq + δSμ = suμ + Φμ, (15)

where the entropy flux relative to uμ is Φμ = Sν�
μν . The

LRF entropy density is s = Sμuμ, where in general s ≤
seq(e, n).

Following Refs. [5–8], the phenomenological extension
of the entropy four-current by Israel and Stewart can be writ-
ten without heat conductivity as

Sμ ≡ suμ = sequ
μ − (

β0Π
2 + β2π

αβπαβ

) uμ

2T
, (16)

where the coefficients β0, β2 are functions of e and n. Their
exact value can be determined explicitly e.g. from kinetic
theory.

The requirement of non-decreasing entropy leads to re-
laxation equations for the bulk pressure and shear stress ten-
sor. Here we also include the vorticity terms which follow
from the kinetic-theory derivation, but we neglect the cou-
pling between bulk and shear viscosity. Then, the IS equa-
tions [8, 16] read

DΠ = 1

τΠ

(ΠNS − Π) − I0, (17)

Dπμν = 1

τπ

(
π

μν
NS − πμν

) − I
μν
1 − I

μν
2 − I

μν
3 , (18)

where τΠ = ζβ0 denotes the relaxation time of the bulk vis-
cous pressure and τπ = 2ηβ2 is the relaxation time of the
shear stress tensor. The relativistic Navier–Stokes values are
given by [25, 26]

ΠNS ≡ −ζθ, (19)

π
μν
NS ≡ 2ησμν, (20)

where ζ ≥ 0 is the bulk viscosity coefficient and η ≥ 0 is the
shear viscosity coefficient. In (17), (18), we introduced the

abbreviations

I0 ≡ 1

2
Π

(
∇λu

λ + D ln
β0

T

)
, (21)

I
μν
1 ≡ (

πλμuν + πλνuμ
)
Duλ, (22)

I
μν
2 ≡ 1

2
πμν

(
∇λu

λ + D ln
β2

T

)
, (23)

I
μν
3 ≡ 2π

〈μ
λ ων〉λ = πμλων

λ + πνλω
μ
λ, (24)

where we used πμνωμν = 0.
For the sake of simplicity, in our numerical studies pre-

sented in the subsequent sections we assume a gas of mass-
less Boltzmann particles without conserved charges. In this
case, the equation of state is simply e = 3p and e = 3g

π2 T 4,
where g is the number of degrees of freedom. The equilib-
rium entropy density is given by seq = 4g

π2 T 3. In this case,

we can further simplify I
μν
2 noting that the exact value of

the thermodynamic integral for massless Boltzmann gas is,
β2 = 3/(4p) [8, 30]. Therefore, it follows that Dβ2/β2 =
−De/e. Thus, D ln(β2/T ) = −De/e − DT/T , where the
temperature can be calculated from the EOS. The convective
time derivative of the LRF energy density is given by energy
conservation, De = −(e + P)u

μ

;μ − πμνuμ;ν , where the ef-
fective pressure P is defined as P(e,n,Π) = p(e,n) + Π .

2.3 General coordinate representation

Here we give the relations between T μν and Nμ in the cal-
culational, or laboratory, frame and the LRF densities e, n,
and the flow velocity vi . The natural frame of reference is
the laboratory frame. However, during the time evolution
of the system, we have to extract the local velocity and the
LRF densities from the laboratory frame quantities. These
are needed because the EOS is given as a function of LRF
densities, p = p(e,n).

We can write the four-vector and tensor quantities given
in (11), (12) by specifying the four-velocity of the matter,
uμ = γ (1, vi) = γ (1, vx, vy, vz), where γ = (1 − v2)−1/2

and v ≡ |v| = (v2
x +v2

y +v2
z )

1/2. The laboratory frame quan-
tities take the form

N0 ≡ nγ, (25)

Ni ≡ nγ vi = viN
0, (26)

T 00 ≡ (e + P)γ 2 − g00P + π00, (27)

T 0i ≡ (e + P)γ 2vi − g0iP + π0i

= viT
00 + P

(
g00vi − g0i

) − viπ
00 + π0i , (28)

T ij ≡ (e + P)γ 2vivj − Pgij + πij

= viT
0j + P

(
g0j vi − gij

) − viπ
0j + πij . (29)
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N0 is the local charge density, Ni is the local charge cur-
rent in the direction i, i.e., the direction of the flow ui . The
total energy density of the fluid is T 00 which in the LRF re-
duces to the (equilibrium) energy density e. By definition,
T 0i denotes the energy flow in the direction of ui , while T i0

is the momentum density flux in the ith direction.1 The re-
maining spatial part, T ij , denotes the ith component of the
momentum flowing in direction j .

The LRF charge density and energy density are obtained
from (25) and (27), (28), respectively,

n = N0(1 − v2)1/2
, (30)

e = T 00 − π00 − vi

(
T 0i − π0i

)
, (31)

while (28) together with the above expressions leads to the
expression for the velocity components,

vi = T 0i − π0i + Pg0i

T 00 − π00 + Pg00
. (32)

In most cases of interest g00 = 1, and the metric of the
space-time is diagonal. Therefore we can introduce a simpli-
fied notation which mimics the perfect-fluid relations [29],
R = nγ , E ≡ T 00 − π00, Mi ≡ T 0i − π0i , where M ≡
|M| = (M2

x + M2
y + M2

z )1/2. Thus, M is parallel to the ve-
locity v, similarly as in the perfect-fluid case. These quanti-
ties have to obey the physical constraint M ≤ E, in order to
obtain meaningful solutions. Therefore, we can express the
LRF charge density, energy density, the absolute magnitude
of the velocity, and the velocity components as

n = R(1 − v · v)1/2, (33)

e = E − v · M, (34)

v = M/[E + P ], (35)

vi = vMi/M. (36)

Substituting (33), (34) into (35) we obtain the equation for
the magnitude of the velocity, v. This can be solved by us-
ing a one-dimensional root search. Thereafter, use of (36)
yields the individual velocity components and γ . Note that,
in the case of perfect fluids, this simplified treatment is prac-
ticable, however, in case of dissipative fluids, this may not
always be possible. This is due to the fact that the vectors
T 0μ and π0μ are not parallel to each other. Hence choosing
other shear stress tensor components as independent vari-
ables, or in cases which take into account the heat flow, it is
required to carry out a multidimensional root search to find
the velocity [18, 22, 29, 31].

1In standard units the flow of the energy density is cT 0i , while the flow
of momentum density is c−1T i0.

For dissipative fluids the number of unknown variables
increases by the introduction of the shear stress tensor and
the bulk viscosity. The shear stress tensor is constrained by
the orthogonality condition πμνuν = 0, leading to the fol-
lowing relations,

πi0u0 ≡ −πijuj , (37)

π00u0 ≡ −π0iui = πijujui/u0. (38)

One more independent relation follows from the trace of the
shear stress tensor, π

μ
μ = 0,

π00 ≡ −πiigii . (39)

In general, using (37) we can reduce the number of un-
knowns by three, and by two using (38) and (39). Thus
we are left with five independent components of the shear
stress tensor. However, for testing the numerical solutions it
is preferable to calculate all shear stress tensor components
directly using the relaxation equations, instead of using the
orthogonality relations. We will return to this matter later
and provide examples.

3 Test problems

In this section we shall write the IS equations in var-
ious (1 + 1)- and (2 + 1)-dimensional geometries with
Cartesian or curvilinear coordinates. For the sake of com-
pleteness, the (2 + 1)-dimensional boost-invariant and the
(3 + 1)-dimensional IS equations in Cartesian as well as in
(τ, x, y, η) coordinates are given in the appendices. Here τ

is the longitudinal proper time and η is the space-time rapid-
ity.

3.1 (1 + 1)-dimensional Cartesian coordinates

In Cartesian coordinates, the metric tensor is gμν ≡ ημν =
diag(1,−1,−1,−1) and all Christoffel symbols vanish. The
negative determinant of the metric is g = 1. We assume that
the system evolves along the z direction and that it is homo-
geneous in the transverse plane, such that the spatial deriva-
tives in x and y directions vanish identically. The flow veloc-
ity of matter is uμ = γz(1,0,0, vz) and γz = (1 − v2

z )
−1/2.

The components of the energy–momentum tensor and
charge current in the laboratory frame are

N0 ≡ nγz, (40)

Nz ≡ N0vz, (41)

T 00 ≡ (e + P)γ 2
z − P + π00 = (e + Pz)γ

2
z − Pz, (42)

T 0z ≡ (e + P)γ 2
z vz + π0z = (e + Pz)γ

2
z vz, (43)
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T xx ≡ πxx + P = −π

2
+ P, (44)

T yy ≡ πyy + P = −π

2
+ P, (45)

T zz ≡ (e + P)γ 2
z v2

z + P + πzz = (
ev2

z + Pz

)
γ 2
z , (46)

where the shear pressure, π , is defined such that πzz =
γ 2
z π . The orthogonality and tracelessness properties im-

ply πxx = πyy = −π/2, and π00 = v2
z γ

2
z π , see Ref. [31].

From the orthogonality relation we obtain π0z = vzπ
zz =

vzγ
2
z π . The effective pressure in the z direction is denoted

by Pz ≡ P + π = p(e,n) + Π + π . The remaining four-
vector and tensor components vanish, Nx = Ny = 0 and
T 0x = T 0y = T xy = T xz = T yz = 0. This also means that
the corresponding shear stress tensor components vanish,
π0x = π0y = πxy = πxz = πyz = 0.

The LRF quantities and the velocity can be expressed in
terms of the laboratory quantities,

n = N0(1 − v2
z

)1/2
, (47)

e = T 00 − vzT
0z, (48)

vz = T 0z

T 00 + Pz

. (49)

The conservation equations follow from (13), (14),

∂tN
0 + ∂z

(
vzN

0) = 0, (50)

∂tT
00 + ∂z

(
vzT

00) = −∂z(vzPz), (51)

∂tT
0z + ∂z

(
vzT

0z
) = −∂zPz. (52)

The relaxation equations for the bulk viscous and shear pres-
sure follow from (17), (18):

γz∂tΠ + γzvz∂zΠ = 1

τΠ

(ΠNS − Π) − I0, (53)

γz∂tπ + γzvz∂zπ = 1

τπ

(πNS − π) − I2, (54)

where I xx
1 = I xx

3 = 0. The Navier–Stokes values of the bulk
viscous and shear pressure are

ΠNS ≡ −ζθz, (55)

πNS ≡ 2ησ = −4

3
ηθz, (56)

where θz ≡ ∂μuμ = ∂tγz +∂z(γzvz) = ∇μuμ denotes the ex-
pansion scalar and σ = −2σxx = θz/3 is the shear stress.
Furthermore (21) and (23) with I2 = −2I xx

2 , lead to

I0 = Π

2

(
θz + D ln

β0

T

)
, (57)

I2 = π

2

(
θz + D ln

β2

T

)
. (58)

3.2 (1 + 1)-dimensional cylindrical coordinates

In the case of (1 + 1)-dimensional cylindrical coordinates,
all quantities are functions of the time t and the radial
coordinate r only. The flow velocity is given by uμ =
γr(1, vr ,0,0), where γr = (1 − v2

r )
−1/2. The gradient op-

erator is ∂μ = (∂t , ∂r ,0,0). The terms containing ∂φ and ∂z

vanish identically.
The metric tensor transforms as gμν = ∂x̃α

∂xμ
∂x̃β

∂xν ηαβ ,
where xμ = (t, r, φ, z), x̃μ = (t, x, y, z) and ημν is the
Cartesian metric. The spatial coordinates are r = √

x2 + y2

and φ = arctan(y/x). The contravariant and covariant met-
ric tensors are gμν = diag(1,−1,−1/r2,−1) and gμν =
diag(1,−1,−r2,−1), respectively. The negative determi-
nant is g = r2. The only non-vanishing Christoffel symbols
are �

φ
φr = �

φ
rφ = r−1 and �r

φφ = −r .
The laboratory frame quantities are

N0 ≡ nγr, (59)

Nr ≡ N0vr , (60)

T 00 ≡ (e + P)γ 2
r − P + π00 = (e + Pr)γ

2
r − Pr, (61)

T 0r ≡ (e + P)γ 2
r vr + π0r = (e + Pr)γ

2
r vr , (62)

T rr ≡ (e + P)γ 2
r v2

r + P + πrr

= (e + Pr)γ
2
r v2

r + Pr, (63)

T φφ ≡ P

r2
+ πφφ, (64)

T zz ≡ P + πzz, (65)

where Pr is the effective pressure in the radial direction
defined below. All remaining vector and tensor compo-
nents vanish identically, Nφ = Nz = 0, T 0φ = T 0z = T φr =
T φz = T rz = 0 and π0φ = π0z = πφr = πφz = πrz = 0.

To reduce the number of unknowns we use the transver-
sality of the shear stress tensor, leading to π0r = vrπ

rr ,
π00 = v2

r π
rr . The tracelessness condition gives π00 =

πrr + r2πφφ + πzz. The simplest solution is to choose πφφ

and πzz as the independent components of the shear stress
tensor, since a Lorentz boost in radial direction does not
affect these components. The remaining shear stress ten-
sor components can be expressed by using these compo-
nents,

πrr = −γ 2
r

(
r2πφφ + πzz

)
, (66)

π0r = −vrγ
2
r

(
r2πφφ + πzz

)
, (67)

π00 = −v2
r γ

2
r

(
r2πφφ + πzz

)
. (68)

The LRF charge density, energy density, and velocity are
given as
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n = N0(1 − v2
r

)1/2
, (69)

e = T 00 − vrT
0r , (70)

vr = T 0r

T 00 + Pr

, (71)

where Pr ≡ P + πrr

γ 2
r

= P − r2πφφ − πzz.

The charge conservation equation and the equations of
energy and momentum conservation follow from (13), (14),

∂tN
0 + ∂r

(
vrN

0) = −1

r

(
vrN

0), (72)

∂tT
00 + ∂r

(
vrT

00) = − ∂r

(
vrPr

)

− 1

r

(
vrT

00 + vrPr

)
, (73)

∂tT
0r + ∂r

(
vrT

0r
) = − ∂rPr

− 1

r

(
vrT

0r − 2r2πφφ − πzz
)
. (74)

Due to symmetry the right-hand side of (74) has to vanish at
the origin. The relaxation equations follow from (17), (18),

γr∂tΠ + γrvr∂rΠ = 1

τπ

(ΠNS − Π) − I0, (75)

γr∂tπ
φφ + γrvr∂rπ

φφ = 1

τπ

(
π

φφ
NS − πφφ

)

− 2
γrvr

r
πφφ − I

φφ
2 , (76)

γr∂tπ
zz + γrvr∂rπ

zz = 1

τπ

(
πzz

NS − πzz
) − I zz

2 , (77)

where the expansion scalar is θr = ∂tγr + r−1∂r (rγrvr) and
I

φφ
1 = I zz

1 = I
φφ
3 = I zz

3 = 0. Note that the convective time
derivative from (4) leads to an extra term for the πφφ com-
ponent, which was missed in (5.16) of Ref. [29].

The shear stress tensor components are calculated
from (9), hence the Navier–Stokes values for the bulk vis-
cous pressure and shear stress tensor are,

ΠNS ≡ −ζθr , (78)

π
φφ
NS ≡ 2ησφφ = 2η

r2

(
θr

3
− γrvr

r

)
, (79)

πzz
NS ≡ 2ησ zz = 2η

θr

3
. (80)

Also note that the r−2 factor in π
φφ
NS might cause problems

close to the origin. Hence it is preferable to rewrite the relax-
ation equation using the following variable: π̃φφ = r2πφφ .

The term I0 and the relevant components of I
μν
2 are given

by

I0 = 1

2
Π

(
θr + D ln

β0

T

)
, (81)

I
φφ
2 = 1

2
πφφ

(
θr + D ln

β2

T

)
, (82)

I zz
2 = 1

2
πzz

(
θr + D ln

β2

T

)
. (83)

We also have the following relations between the cylindri-
cally symmetric and Cartesian systems (with similar rela-
tions between the shear stress tensor components)

T 0x = T 0r cosφ, (84)

T 0y = T 0r sinφ, (85)

T xx = T rr cos2 φ + r2T φφ sin2 φ, (86)

T yy = T rr sin2 φ + r2T φφ cos2 φ, (87)

T xy = (
T rr − r2T φφ

)
cosφ sinφ, (88)

while T 00 and T zz remain unchanged. The inverse transfor-
mations are

T 0r = T 0x cosφ + T 0y sinφ, (89)

T 0φ = (
T 0y cosφ − T 0x sinφ

)
/r, (90)

T rr = T xx cos2 φ + T xy sin(2φ) + T yy sin2 φ, (91)

T φφ = [
T xx sin2 φ − T xy sin(2φ) + T yy cos2 φ

]
/r2, (92)

T rφ = [(
T yy − T xx

)
sinφ cosφ + T xy cos(2φ)

]
/r. (93)

These relations will be used to compare the evolution of
cylindrically symmetric and Cartesian systems.

3.3 (2 + 1)-dimensional Cartesian coordinates

For (2 + 1)-dimensional Cartesian coordinates, the covari-
ant derivative of any four-vector reduces to the standard
four-divergence, since all Christoffel symbols vanish. We
assume that the system is homogeneous in the z direction
and the velocity, as well as the derivative in this direction,
vanish. Hence the four-flow and four-gradient are function
of (t, x, y) coordinates alone, thus uμ = γ⊥(1, vx, vy,0),
∂μ = (∂t , ∂x, ∂y,0), where γ⊥ = (1 − v2⊥)−1/2 and v⊥ =
(v2

x + v2
y)

1/2.
The relevant laboratory frame quantities are

N0 ≡ nγ⊥, (94)

Nx ≡ N0vx, (95)

Ny ≡ N0vy, (96)

T 00 ≡ (e + P)γ 2⊥ − P + π00, (97)

T 0x ≡ (e + P)γ 2⊥vx + π0x

= vxT
00 + vxP − vxπ

00 + π0x, (98)
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T 0y ≡ (e + P)γ 2⊥vy + π0y

= vyT
00 + vyP − vyπ

00 + π0y, (99)

T xx ≡ (e + P)γ 2⊥v2
x + P + πxx

= vxT
0x + P − vxπ

0x + πxx, (100)

T yy ≡ (e + P)γ 2⊥v2
y + P + πyy

= vyT
0y + P − vyπ

0y + πyy, (101)

T xy ≡ (e + P)γ 2⊥vxvy + πxy

= vxT
0y − vxπ

0y + πxy

= vyT
0x − vyπ

0x + πxy, (102)

T zz = P + πzz. (103)

The remaining z-directed four-vector and tensor compo-
nents vanish, i.e., Nz = 0, T 0z = T xz = T yz = 0 and π0z =
πxz = πyz = 0. The LRF charge density and energy density
are

n = N0(1 − v2
x − v2

y

)1/2
, (104)

e = T 00 − π00 − vx

(
T 0x − π0x

) − vy

(
T 0y − π0y

)
, (105)

while the velocity components from (32) lead to

vx = T 0x − π0x

T 00 − π00 + P
, (106)

vy = T 0y − π0y

T 00 − π00 + P
. (107)

The velocity components can be calculated from the equa-
tions given above using a two-dimensional root search or via
a one-dimensional root search using (35), (36).

Since we previously fixed and explicitly used some shear
stress tensor components in the velocity calculation, we
choose to express the remaining components in terms of the
former. The orthogonality relation (37) and the tracelessness
relation (39) yield

π0x = πxxvx + πxyvy, (108)

π0y = πxyvx + πyyvy, (109)

π00 = πxx + πyy + πzz. (110)

Therefore, as function of the chosen independent variables,
π00,π0x,π0y , and πzz, the other shear stress tensor compo-
nents are

πxx = [
v2
y

(
π00 − πzz

) + vxπ
0x − vyπ

0y
]
/v2⊥, (111)

πyy = [
v2
x

(
π00 − πzz

) − vxπ
0x − vyπ

0y
]
/v2⊥, (112)

πxy = [−vxvy

(
π00 − πzz

) + vyπ
0x + vxπ

0y
]
/v2⊥. (113)

One may then check whether the remaining orthogonality
relation,

π00 = π0xvx + π0yvy, (114)

is fulfilled. The above relations between the shear stress ten-
sor components become unusable in the case that the veloc-
ity in the transverse direction approaches zero. Therefore, in
our calculations we shall neglect the above simplifications
and calculate all shear stress tensor components explicitly.

Note that one can choose to select πxx,πyy , and πxy as
independent components, therefore π00,π0x,π0y , and πzz

are given by (108)–(110) and (114), see Refs. [18, 22]. How-
ever, in this case the velocity iteration is two-dimensional
which may become computationally as expensive as solving
the additional transport equations.

The conservation of net charge N0, energy T 00, and the
momentum components T 0x and T 0y are

∂tN
0 + ∂x

(
vxN

0) + ∂y

(
vyN

0) = 0, (115)

∂tT
00 + ∂x

(
vxT

00) + ∂y

(
vyT

00)

= −∂x

(
vxP − vxπ

00 + π0x
)

− ∂y

(
vyP − vyπ

00 + π0y
)
, (116)

∂tT
0x + ∂x

(
vxT

0x
) + ∂y

(
vyT

0x
)

= −∂x

(
P − vxπ

0x + πxx
) − ∂y

(−vyπ
0x + πxy

)
,

(117)

∂tT
0y + ∂x

(
vxT

0y
) + ∂y

(
vyT

0y
)

= −∂x

(−vxπ
0y + πxy

) − ∂y

(
P − vyπ

0y + πyy
)
.

(118)

The relaxation equations for the bulk viscous pressure, Π ,
and the components π00,π0x,π0y,πxx,πyy,πzz,πxy of
the shear stress tensor are

γ⊥∂tΠ + γ⊥vx∂xΠ + γ⊥vy∂yΠ

= 1

τΠ

(ΠNS − Π) − I0, (119)

γ⊥∂tπ
μν + γ⊥vx∂xπ

μν + γ⊥vy∂yπ
μν

= 1

τπ

(
π

μν
NS − πμν

) − I
μν
1 − I

μν
2 − I

μν
3 , (120)

where the Navier–Stokes values are ΠNS ≡ −ζθ⊥ and
π

μν
NS ≡ 2ησμν , and the expansion scalar is θ⊥ = ∂tγ⊥ +

∂x(γ⊥vx) + ∂y(γ⊥vy).
The components of the shear tensor can be calculated

from (9), which reduces to the following simple form σμν ≡
1
2 (∂μuν − uμDuν + ∂νuμ − uνDuμ)− θ⊥

3 �μν in Cartesian
coordinates. Hence,

σ 00 = ∂tγ⊥ − γ⊥Dγ⊥ + (
γ 2⊥ − 1

)θ⊥
3

, (121)
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σ 0x = 1

2

[
∂t (γ⊥vx) − ∂xγ⊥

]

− 1

2

[
γ⊥D(γ⊥vx) + γ⊥vxDγ⊥

] + γ 2⊥vx

θ⊥
3

, (122)

σ 0y = 1

2

[
∂t (γ⊥vy) − ∂yγ⊥

]

− 1

2

[
γ⊥D(γ⊥vy) + γ⊥vyDγ⊥

] + γ 2⊥vy

θ⊥
3

, (123)

σxx = −∂x(γ⊥vx) − γ⊥vxD(γ⊥vx)

+ (
1 + γ 2⊥v2

x

)θ⊥
3

, (124)

σyy = −∂y(γ⊥vy) − γ⊥vyD(γ⊥vy)

+ (
1 + γ 2⊥v2

y

)θ⊥
3

, (125)

σxy = −1

2

[
∂x(γ⊥vy) + ∂y(γ⊥vx)

]

− 1

2

[
γ⊥vxD(γ⊥vy) + γ⊥vyD(γ⊥vx)

]

+ γ 2⊥vxvy

θ⊥
3

, (126)

σzz = θ⊥
3

, (127)

where D ≡ uμ∂μ = γ⊥∂t + γ⊥vx∂x + γ⊥vy∂y .
The term I

μν
1 = (πλμuν + πλνuμ)Duλ leads to

I 00
1 = 2γ⊥

[
π00Dγ⊥ − π0xD(γ⊥vx)

− π0yD(γ⊥vy)
]
, (128)

I 0x
1 = γ⊥

[(
π00vx + π0x

)
Dγ⊥

− (
π0xvx + πxx

)
D(γ⊥vx)

− (
π0yvx + πxy

)
D(γ⊥vy)

]
, (129)

I
0y

1 = γ⊥
[(

π00vy + π0y
)
Dγ⊥

− (
π0xvy + πxy

)
D(γ⊥vx)

− (
π0yvy + πyy

)
D(γ⊥vy)

]
, (130)

I xx
1 = 2γ⊥vx

[
π0xDγ⊥ − πxxD(γ⊥vx)

− πxyD(γ⊥vy)
]
, (131)

I
yy

1 = 2γ⊥vy

[
π0yDγ⊥ − πxyD(γ⊥vx)

− πyyD(γ⊥vy)
]
,

I
xy

1 = γ⊥
[(

π0xvy + π0yvx

)
Dγ⊥ (132)

− (
πxxvy + πxyvx

)
D(γ⊥vx)

− (
πxyvy + πyyvx

)
D(γ⊥vy)

]
, (133)

and I zz
1 = 0. The terms I0 and I

μν
2 are again given by (21)

and (23), respectively. Finally, the components of the term

I
μν
3 = πμλων

λ + πνλω
μ
λ are explicitly given by

I 00
3 = 2

(
π0xω0

x + π0yω0
y

)
, (134)

I 0x
3 = π00ωx

0 + π0yωx
y + πxxω0

x + πxyω0
y, (135)

I
0y

3 = π00ω
y

0 + π0xω
y
x + πxyω0

x + πyyω0
y, (136)

I xx
3 = 2

(
π0xωx

0 + πxyωx
y

)
, (137)

I
yy

3 = 2
(
π0yω

y

0 + πxyω
y
x

)
, (138)

I
xy

3 = π0xω
y

0 + πxxω
y
x + π0yωx

0 + πyyωx
y, (139)

and I zz
3 = 0. The vorticity tensor in Cartesian coordinates is

given by, ω
μ
ν ≡ 1

2 (∂νu
μ − ∂μuν +uμDuν −uνDuμ), there-

fore the non-vanishing vorticity tensor components are

ω0
x = 1

2

[
∂xγ⊥ + ∂t (γ⊥vx)

]

+ 1

2

[
γ⊥vxDγ⊥ − γ⊥D(γ⊥vx)

]
, (140)

ω0
y = 1

2

[
∂yγ⊥ + ∂t (γ⊥vy)

]

+ 1

2

[
γ⊥vyDγ⊥ − γ⊥D(γ⊥vy)

]
, (141)

ωx
y = 1

2

[
∂y(γ⊥vx) − ∂x(γ⊥vy)

]

+ 1

2

[
γ⊥vyD(γ⊥vx) − γ⊥vxD(γ⊥vy)

]
, (142)

where the vorticity tensor components satisfy the following
relations, ω0

x = ωx
0 = −ω0x = ω0x , ω0

y = ω
y

0 = −ω0y =
ω0y and ωx

y = −ω
y
x = −ωxy = −ωxy .

4 Numerical methods

In this section we present in detail the numerical algorithm
used to solve the equations of relativistic dissipative fluid
dynamics in (1 + 1)- and (2 + 1)-dimensional geometries.
In our case, this will be the SHArp and Smooth Transport
Algorithm (SHASTA) [33]. We also briefly discuss other
schemes, and conclude with remarks on the numerical reso-
lution and dissipative fluxes.

4.1 One-dimensional implementation

In (1 + 1)-dimensional systems the equations of charge and
energy–momentum conservation, (50), (51), (52), are of
conservation type and can be generally written as

∂tU + ∂x(vxU) = S(t, x), (143)

where U = U(t, x) is the conserved quantity, vx is the flow
velocity in x direction, and S(t, x) is the source term. The
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relaxation equations (53), (54) are of convective type. These
equations can be rearranged in conservation form with an
additional source term [31, 32],

∂tUπ + ∂x(vxUπ) = Uπ∂xvx + Sπ(t, x), (144)

where Uπ is Π or π , and Sπ is the source term either
from (53) or (54) divided by γ = (1 − v2

x)
−1/2.

To solve the above type of equations numerically, the
original partial differential equations are replaced by ap-
proximate algebraic difference equations and the values of
U , v, and S are given at discrete grid points. The conser-
vative, or primary, variable U(t, x) is replaced by its av-
erage Un

i over the cell i at coordinate point xi , and at the
discrete time step tn. The algorithms used in this work be-
long to the class of finite-volume methods where fluxes of
the conserved quantity through the cell boundaries are cal-
culated or approximated. This explicitly guarantees the con-
servation of the primary variable. The velocity and source
terms are defined as a function of primary variables. When-
ever source terms contain spatial derivatives, they are calcu-
lated by using second-order central differences, e.g. ∂xU

n
i =

(Un
i+1 − Un

i−1)/(2�x). Time derivatives in source terms
are calculated using first-order backward differences, e.g.
∂tU

n
i = (Un−1

i − Un
i )/�t .

Here we will give a brief presentation of our numerical
algorithm. Due to its simplicity, accuracy, and easy imple-
mentation for this study we choose the SHASTA [33] which
was one of the first versions of Flux Corrected Transport
(FCT) algorithms in the 1970s. Ever since, the FCT method
has been extensively tested and refined for various studies,
for example, the ETBFCT version by Boris [34], which also
forms the basis for the LCPFCT algorithm [35], and the YD-
FCT algorithm by Tóth and Odstrcil [36].

These explicit higher-order monotonic numerical meth-
ods have been especially designed to work in the presence
of strong gradients such as shocks. Typically low-order nu-
merical schemes result in strong numerical diffusion due to
the large truncation error, which tends to smooth out all the
structures in the solution. Thus, low-order schemes are prac-
tically unusable unless unrealistically small grid sizes are
used. Second-order schemes do not suffer from large nu-
merical diffusion, but instead from a strong numerical dis-
persion, i.e., different Fourier modes propagate at different
speeds. Especially in the presence of strong gradients like
shock waves, numerical dispersion causes unphysical rip-
ples in the solution, which eventually invalidates the whole
calculation.

In the SHASTA this problem is solved by first calculating
a low-order solution which has a large numerical diffusion
component. In the second step, as much diffusion as possible
is removed from the low-order solution in such a way that no
new maxima or minima are created, i.e., the monotonicity

of the solution will be preserved. The remaining, or resid-
ual, diffusion of numerical origin is called numerical vis-
cosity. In the FCT algorithms the numerical viscosity has
both linear and non-linear contributions and therefore must
be assessed separately for the problems at hand. This im-
plicit numerical viscosity is, of course, different from the
well-known explicit artificial viscosity of von Neumann, or
Lax and Wendroff [37].

The low-order, or transported and diffused, solution in
the explicit SHASTA method [33] is given by

Ũi = 1

2

(
Q2+�i − Q2−�i−1

)

+ (Q+ − Q−)Un
i + �tSi. (145)

Here, we defined

�i = Ui+1 − Ui, (146)

Q± = 1/(2λ) ∓ vn
i

1/λ ± (vn
i±1 − vn

i )
, (147)

where λ ≡ �t/�x is the Courant number which in the
SHASTA is restricted to values λ ≤ 1/2. The final time-
advanced quantities are calculated by subtracting the so-
called antidiffusion fluxes, Ã, from the transported and dif-
fused solution such that

Un+1
i = Ũi − Ãi + Ãi−1, (148)

where the flux-corrected antidiffusion flux is

Ãi = σimax
[
0,min

(
σi�̃i+1, |Ai |, σi�̃i−1

)]
. (149)

Here, similarly as in (146) the difference of primary vari-
ables in adjacent cells is denoted by �̃i = Ũi+1 − Ũi , while
the explicit antidiffusion flux is

Ai = Aad�̃i/8, (150)

σi = sgn(Ai). (151)

In the SHASTA, Aad = 1 is the default value of the so-
called mask coefficient [38]. This is a multiplicative con-
stant which can be set to lower values to reduce the amount
of antidiffusion.

Second-order accuracy in time is obtained by applying
the SHASTA twice. First we calculate the velocity and
source terms at time step n + 1/2. In the second step, these
half-step velocity and source terms are used to calculate the
final time-advanced quantity Un+1

i . In a given cell, this can
be summarized in formulas as

Un+1/2 = Un
(
Un,vn, Sn,�t/2,�x

)
, (152)

Un+1 = Un
(
Un,vn+1/2, Sn+1/2,�t,�x

)
. (153)
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The relaxation equations are solved in a similar manner,
however in this case the source terms actually depend on the
primary variables, velocity field, and LRF quantities, there-
fore their values must be saved for full and half time steps.
This requires much more memory compared to codes which
solve ideal relativistic fluid dynamics.

4.2 Multidimensional implementation

The (2 + 1)-dimensional conservation equations are com-
monly written as

∂tU + ∂x(vxU) + ∂y(vyU) = S(t, x, y). (154)

The cell-averaged conserved variable U(t, x, y) is denoted
by Un

i,j . A standard approach to solve such equations is to
apply the dimensional or operator splitting method, which
splits the original multidimensional equation into a sequence
of (1 + 1)-dimensional problems [39].

A slightly different but more efficient approach is used
in this work. We calculate the low-order transport solution
separately in the x and y directions by using the (1 + 1)-
dimensional SHASTA (145) without the source term. Thus,
the x-transported quantity Ũ x

i,j is given as

Ũx
i,j = 1

2

[(
Qx+

)2
�x

i,j − (
Qx−

)2
�x

i−1,j

]

+ (
Qx+ − Qx−

)
Un

i,j , (155)

Qx± = 1/(2λx) ∓ (vx)
n
i,j

1/λx ± [(vx)
n
i±1,j − (vx)

n
i,j ]

, (156)

where �x
i,j = Un

i+1,j − Un
i,j and λx = �x/�t ≤ 0.5 is the

Courant number in the x direction. A similar formula, with
vx replaced by vy and all cell differences taken in y direc-
tion, holds for the y-transported quantity Ũ

y
i,j . The trans-

ported and diffused solution is then

Ũi,j = Ũ x
i,j + Ũ

y
i,j − Un

i,j + �t Si,j . (157)

The advantage of this method is that it keeps the x − y

symmetry of the system without the need to permute the
directions in which the grid is updated. In this case it is
also possible to implement a multidimensional flux correc-
tion in the FCT algorithm which avoids some numerical
problems and leads to slightly smoother results compared
to the dimensional splitting method for the same mask coef-
ficient. To obtain second-order accuracy, we use the method
by DeVore [40], which is an improved version of Zalesak’s
method [41]. The full solution is given by

Un+1
i,j = Ũi,j − Âx

i,j − Â
y
i,j + Âx

i−1,j + Â
y

i,j−1, (158)

where the Â’s are the limited antidiffusion fluxes given
in (171) and (172) below.

As in the (1+1)-dimensional case the antidiffusion fluxes
in x and y directions are given by

Ax
i,j = Ax

ad �̃x
i,j /8, (159)

A
y
i,j = A

y

ad �̃
y
i,j /8, (160)

where Ax
ad,A

y

ad are the antidiffusive mask coefficients, sim-
ilarly to the (1 + 1)-dimensional case. Furthermore,

�̃x
i,j = Ũi+1,j − Ũi,j , (161)

�̃
y
i,j = Ũi,j+1 − Ũi,j . (162)

In the DeVore scheme, the antidiffusion fluxes in x and y

directions are first limited as in the (1+1)-dimensional case,

Ãx
i,j = σx

i,j max
[
0,min

(
σx

i,j �̃
x
i+1,j , |Ax

i,j |, σ x
i,j �̃

x
i−1,j

)]
,

(163)

Ã
y
i,j = σ

y
i,j max

[
0,min

(
σ

y
i,j �̃

y

i,j+1, |Ay
i,j |, σ y

i,j �̃
y

i,j−1

)]
,

(164)

where σx
i,j = sgn(Ax

i,j ) and σ
y
i,j = sgn(A

y
i,j ). Note that this

additional step was introduced by DeVore into the multidi-
mensional flux limiting algorithm by Zalesak.

The allowed values for Un+1
i,j after the antidiffusion stage

are between

Ũmin
i,j = min

(
Ũi,j−1, Ũi−1,j , Ũi,j , Ũi+1,j , Ũi,j+1

)
, (165)

Ũmax
i,j = max

(
Ũi,j−1, Ũi−1,j , Ũi,j , Ũi+1,j , Ũi,j+1

)
. (166)

The total incoming and outgoing antidiffusive fluxes in cell
(i, j) are calculated as

Ain
i,j = max

(
0, Ãx

i−1,j

) − min
(
0, Ãx

i,j

)

+ max
(
0, Ã

y

i,j−1

) − min
(
0, Ã

y
i,j

)
, (167)

Aout
i,j = max

(
0, Ãx

i,j

) − min
(
0, Ãx

i−1,j

)

+ max
(
0, Ã

y
i,j

) − min
(
0, Ã

y

i,j−1

)
. (168)

This information is then used to determine the fractions of
the incoming and outgoing fluxes,

F in
i,j = (

Ũmax
i,j − Ũi,j

)
/Ain

i,j , (169)

F out
i,j = (

Ũi,j − Ũmin
i,j

)
/Aout

i,j , (170)

which is subsequently limited so that it creates no under-
shoot or overshoot in the cell it is leaving or entering. Thus,
the new antidiffusive fluxes are given as

Âx
i,j = Ãx

i,j ×
{

min(1,F in
i+1,j ,F

out
i,j ), if Ãx

i,j ≥ 0,

min(1,F in
i,j ,F

out
i+1,j ), if Ãx

i,j < 0,
(171)
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and

Â
y
i,j = Ã

y
i,j ×

{
min(1,F in

i,j+1,F
out
i,j ), if Ã

y
i,j ≥ 0,

min(1,F in
i,j ,F

out
i,j+1), if Ã

y
i,j < 0.

(172)

This (2 + 1)-dimensional numerical scheme can be general-
ized to (3 + 1) dimensions by extending the method to an-
other spatial direction and repeating the above steps.

4.3 Other numerical schemes

Computational fluid dynamics (CDF) is a constantly grow-
ing field of research. There is a vast amount of methods
which have been designed to solve the special relativis-
tic fluid-dynamical equations in the perfect-fluid limit, see
Refs. [42, 43] and references therein.

In applications to relativistic heavy-ion collision the FCT-
SHASTA and RHLLE methods have been systematically
explored for various test problems and shown to give ex-
cellent agreement [44–46]. This is one of the reasons why
we have chosen the SHASTA for our study. There are
other well-known methods widely used in astrophysics and
heavy-ion physics, such as Smoothed-Particle Hydrody-
namics (SPH) [47, 48] which has been recently extended
to dissipative fluids [49–52], or the Particle-In-Cell (PIC)
method [53, 54], but since they are completely different
from finite-volume schemes we will not go into details.

Other methods of interest such as High-Resolution
Shock-Capturing (HRSC) methods based on the exact or
approximate Riemann solution proved to be superior to
SHASTA [42–44, 55]. However, in case of dissipative fluids
such methods become difficult to apply due to the fact that
there are no known analytic or approximate solutions for the
Riemann problem. Recently, new methods have been devel-
oped to solve the hyperbolic equations of conservation or
relaxation type which sidestep the need of Riemann solvers
but have an accuracy comparable to HRSC schemes. These
are new High-Resolution Central Schemes (HRCS) improv-
ing on the Lax–Friedrichs central scheme [56]. The most
important of these are the Nessayu–Tadmor (NT) [57] and
the Kurganov–Tadmor (KT) [58] schemes, see Ref. [59] for
a collection of references.

The KT scheme improves upon the NT scheme using
information about the local propagation of speeds, which
becomes problematic to evaluate for the IS equations.
However, it gives excellent results for perfect fluids [60].
An important extension of the NT scheme was made by
Pareschi [61] to describe both the stiff and unstiff regions
of hyperbolic relaxation equations such as the IS equations
or equations of Öttinger–Grmela type [62]. In the latter
case, this method has been shown to provide robust results
and excellent agreement between the (1 + 1)- and (2 + 1)-
dimensional cases [63]. Following this work we also made
use of both the NT and KT schemes and compared them

with SHASTA for the (1 + 1)-dimensional evolution of a
perfect fluid. The results are very robust and agree very well.
Therefore, without much more efficient methods at hand we
simply choose to solve the IS equations with the SHASTA.

4.4 Remarks on numerical resolution

Fluid dynamics is a theory which is valid on time and length
scales which are larger than the underlying microscopic time
and length scales. In solving the equations of fluid dynam-
ics numerically, we should be able to resolve all relevant
time and length scales in the problem. In practice this means
that the grid spacing �x and time step �t should be smaller
than any of these scales. In perfect-fluid dynamics, or in
the Navier–Stokes theory, all scales are macroscopic, i.e.,
they are inversely proportional to the gradients of the fluid-
dynamical variables like flow field and densities. Thus it is
sufficient to have a numerical resolution that correctly re-
solves the macroscopic structures.

In the IS theory we also need to solve the relaxation equa-
tions for the dissipative currents. In this case the relevant
time scale to be resolved is the relaxation time τR , which
is of the order of the mean time between the collision of
particles. Thus, the time step should be chosen such that
�t � τR . If τR is much smaller than the macroscopic scales,
this might require very high resolution and therefore lead to
very demanding calculations. However, in modeling heavy-
ion collisions, an application which we mainly have in mind,
scale separation by several orders of magnitude is not ex-
pected throughout the whole fluid-dynamical evolution.

There exist specialized methods [61] to solve the equa-
tions in stiff regions. However, we do not consider these
methods here, but simply choose sufficiently high resolution
to resolve both the macroscopic and relaxation time scales.
Therefore, we solve simultaneously both the conservation
and the relaxation equations with the same numerical reso-
lution and scheme.

4.5 Remarks on dissipative fluxes

In relativistic dissipative fluid dynamics, the components of
T μν and πμν cannot take arbitrary values. Obvious physical
constraints are that the LRF energy density must be positive
semi-definite and the velocity must be bounded from above
by the speed of light, i.e., e ≥ 0 and v ≤ 1. Another con-
straint follows from the equation for energy conservation,

∂μT 0μ = ∂tT
00 + ∇ · (ṽT 00) = 0, (173)

where ṽi ≡ T 0i/T 00. In order to have causal propagation of
energy, we have to require that |ṽ| ≤ 1, i.e.,

√
−T 0iT0i ≤ T 00. (174)
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For perfect fluids, because of (49), this condition guarantees
both e ≥ 0 and v ≤ 1, provided that the pressure is positive.
However, in dissipative fluid dynamics this is not necessarily
true, since the condition (174) is sufficient only if the effec-
tive pressure is positive. For example, neglecting the shear
pressure this leads to the condition Π > −p for the bulk
viscous pressure.

The IS theory does not itself restrict the values of the dis-
sipative quantities. In principle any value of shear and bulk
pressure can be used, e.g. as an initial condition. However,
the applicability of the theory requires that the dissipative
currents give sufficiently small corrections to the equilib-
rium quantities. For the shear and bulk pressure this require-
ment can be stated as

|Π | < Cp, (175)
∣∣πμν

∣∣ < C
∣∣T μν

eq

∣∣, (176)

where C is a constant of order, but smaller than, one. If these
conditions are not satisfied, fluid dynamics is not expected
to give a reasonable description of the space-time evolution
of the system and the numerical calculation can become un-
stable [32]. To protect the code from these numerical insta-
bilities the conditions (175) and (176) are always enforced.
This means that after each time step the above conditions
are checked and πμν and Π are adjusted accordingly. We
note that the above conditions may be enforced before the
velocity root search, in which case we have to compare to
the values of T

μν
eq and p from the previous time step. Alter-

natively, one can apply these limiters inside the root search
algorithm. In this case the limiters are applied simultane-
ously with solving for the LRF densities and the velocity. In
every iteration of the velocity root search the shear and bulk
viscous pressure are compared to the values of T

μν
eq and p

at the current time level. This guarantees that the conditions
are always fulfilled, but the drawback is that this is computa-
tionally more expensive. In situations where we expect fluid
dynamics to give a reasonable description these conditions
need not be enforced. However, if they are violated only in
small regions of space-time, i.e., few cells or few time steps,
enforcing the inequalities can prevent these regions to inval-
idate the whole calculation. Naturally, if the inequalities are
violated in large regions of space-time, it signals that fluid
dynamics is no longer a valid theory for such situations.

5 Results of comparisons

In this section we apply the different numerical schemes de-
scribed above to the relativistic Riemann problem in (1 + 1)
and (2 + 1) dimensions. In (1 + 1) dimensions the Riemann
problem is analytically solvable for perfect fluids. Thus, it
provides an important test case to compare the performance
and accuracy of different numerical algorithms.

Unfortunately, analytic solutions for the one-dimensional
viscous Riemann problem are, to the best of our knowledge,
not known. However, this type of one-dimensional test was
performed previously: our fluid-dynamical calculations with
non-zero viscosity were shown to give good agreement with
kinetic-theory simulations using the Boltzmann Approach
to MultiParton Scatterings (BAMPS) [64] parton cascade
code [65, 66]. The purpose of our tests here are to show that
a more complex (2 + 1)-dimensional code can, with similar
initial conditions, remarkably well reproduce our earlier re-
sults for (1 + 1) dimensions. This confirms that the numeri-
cal method produces correct answers in these test scenarios,
and gives us confidence that it can be successfully used to
study phenomena where dissipation plays an important role.

We shall proceed as follows: First, the Riemann prob-
lem is briefly introduced and its analytic solution in (1 + 1)
dimensions is compared with numerical solutions in the
perfect-fluid limit. Here we compare the SHASTA, the NT,
and the KT numerical schemes. They all give comparable re-
sults and can reproduce the analytic results with sufficiently
good numerical resolution. This gives confidence that any
of the schemes forms a good basis to extend the calculation
to multidimensional problems as well as to non-zero vis-
cosity. In this work these extensions are made by using the
SHASTA.

Second, the numerical solutions for the (1+1)-dimensio-
nal Riemann problem with non-zero shear viscosity are
shown. We compare results from the (2 + 1)-dimensional
code to the results from the (1 + 1)-dimensional code and
show that both codes yield, to good accuracy, the same re-
sults.

Finally, the numerical solutions of the (2 + 1)-dimensio-
nal, azimuthally symmetric Riemann problem with non-zero
shear viscosity are studied. We compare the results from the
(1 + 1)-dimensional azimuthally symmetric code to the re-
sults from the (2 + 1)-dimensional code. Again, these calcu-
lations are in excellent agreement with each other.

5.1 The Riemann problem

The initial setup for the (1 + 1)-dimensional Riemann prob-
lem consists of two states with constant pressure, p0 and p4,
separated by a membrane at z = 0. The matter is initially at
rest on both sides and homogeneous in the transverse di-
rections. After the membrane is removed, in thermodynami-
cally normal matter [45] there is a shock wave traveling into
the region with lower pressure, and a rarefaction fan into the
region with larger pressure. The interface between the two
regions moves at a constant velocity and is called the shock
plateau. In dissipative fluids due to non-zero viscosity the
initial sharp discontinuity will be smeared out and the quan-
tities will change smoothly rather than discontinuously.

In numerical calculations, unless stated otherwise, we
have fixed the parameters as follows: The local Courant
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number is λx = λy = 0.4, and the comparison is made at
t = 4 fm. The cell sizes �x,�y, and the antidiffusion coef-
ficients, Ax

ad,A
y

ad are specified separately in all cases.
The energy density in local equilibrium is given by e =

3g

π2 T 4 where g = 16 is the number of degrees of freedom.
Therefore, on the left- and right-hand side of the initial dis-
continuity the energy densities correspond to the following
temperatures: on the left T0 = 0.4 GeV and on the right
T4 = 0.2 GeV. The bulk viscosity to entropy density ra-
tio ζ/s and the shear viscosity to entropy density ratio η/s

are taken as a constant, where the entropy density s = seq

is fixed to its equilibrium value, seq = 4g

π2 T 3. In all test
cases we start from local thermal equilibrium, i.e., initially
πμν = 0. We show only results with shear viscosity, but we
have tested that we get similar results with non-zero bulk
viscous pressure.

5.2 Comparing different methods in perfect-fluid dynamics

The first test compares how well the different numerical
methods can reproduce the analytic Riemann solution [44]
in the perfect-fluid limit. The left panel of Fig. 1 shows the

velocity v, the LRF energy density e, and the expansion rate
θ calculated with the SHASTA, the NT, and the KT schemes
compared with the analytic solution. The numerical calcu-
lations in the figure are made with cell size �x = 0.1 fm
and �t = 0.04 fm/c. We used the non-staggered version of
the HRCS schemes with a minmod limiter (θ = 2) which
ensures that no local extrema are introduced, see (4.9) in
Ref. [58].

All algorithms reproduce the analytic solution with
nearly the same accuracy and numerical artefacts. In partic-
ular, all methods show long-wavelength oscillations which
are best visible in the expansion rate, in the region between
the rarefaction tail and the shock wave. The HRCS calcula-
tions show a somewhat larger overshoot for the velocity at
the contact discontinuity as well as a more diffused shock
front compared to SHASTA with Aad = 1.0.

We also compared the above SHASTA result with a cal-
culation with a reduced mask coefficient Aad = 0.8, shown
in the right panel of Fig. 1. This reduction strongly sup-
pressed the unphysical oscillations in the numerical solu-
tion, but leads also to more diffusive profiles. Furthermore,
with the standard mask coefficient we have used the viscous

Fig. 1 (Color online) The
analytic (thin line) and
numerical solutions of the
relativistic Riemann problem on
a grid with Nx = 100 cells with
�x = 0.1 fm, after Nt = 100
time steps at t = 4 fm/c. a the
collective flow velocity of
matter, v, calculated with the
SHASTA (continuous line), and
the NT (dashed line) and KT
(dotted line) algorithms. b The
velocity, v, calculated with
SHASTA using a mask
coefficient Aad = 1.0
(continuous line), Aad = 0.8
(dashed line), and vSHASTA
with Aad = 1.0 and η/s = 0.01
(dotted line). Similarly, the LRF
energy density, e, and the
invariant expansion rate, θ , are
shown in the panels c, d, and e,
f, respectively
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Fig. 2 (Color online) As in
Fig. 1, except for Nx = 1000
cells with �x = 0.01 fm, after
Nt = 1000 time steps at t =
4 fm/c. Analogously, the shear
viscosity to entropy density
ratio in the vSHASTA
calculations shown in panels b,
d, f is η/s = 0.001

SHASTA (vSHASTA)2 solver with a small physical viscos-
ity η/s = 0.01 and Aad = 1.0. This very closely reproduces
the Aad = 0.8 results with η/s = 0, especially at the smooth
parts of the solution. Therefore, albeit small discrepancies
exist at the shock font, we can conclude that our numer-
ical solutions with the reduced antidiffusion mask coeffi-
cient have an additional numerical viscosity corresponding
to η/s ≈ 0.01 compared to the Aad = 1.0 case.

Since all numerical calculations only approximate the ex-
act solution, there is always some residual numerical vis-
cosity in the solution. In fact, some amount of numerical
viscosity is required to stabilize the solution. However, this
residual numerical viscosity can be made arbitrary small by
increasing the resolution. This is demonstrated in Figs. 2a,
c, e, where all numerical algorithms considered reproduce
the analytic solution almost perfectly with a cell size of
�x = 0.01 fm and �t = 0.004 fm/c. Also, the additional
numerical viscosity resulting from the reduction of the mask

2Our abbreviation only specifies that next to the conservation equations
we also solve the relaxation equations of the physical viscosity using
SHASTA.

coefficient Aad scales approximately with the cell size for a
constant Courant number. This is demonstrated in the right
panel of Fig. 2, where we found that the additional numeri-
cal viscosity corresponds to η/s ≈ 0.001. We have checked
that we get similar results also with other initial temperature
ratios.

5.3 Comparison between the one- and two-dimensional
solutions

The next numerical tests consist of comparing the (1 + 1)-
dimensional solution to the (2 + 1)-dimensional solution of
the one-dimensional Riemann problem in Cartesian coordi-
nates. The one-dimensional Riemann problem can be initial-
ized on a two-dimensional grid in several different ways. We
study here two different initializations. In the first case, the
initial discontinuity is along the y axis, i.e., on the x = 0
plane. In the second case we place the discontinuity on
the y = −x plane. These two cases are compared to the
(1 + 1)-dimensional calculation. Here both one- and two-
dimensional calculations are done using the vSHASTA al-
gorithm, with Aad = 0.8, grid size �x = 0.2 fm and non-
zero shear viscosity η/s = 0.1 in all cases.
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Fig. 3 (Color online) The
numerical solution of the
relativistic Riemann problem
with η/s = 0.1 on a symmetric
grid with Nx = Ny = 200 cells
with �x = 0.2 fm, after
Nt = 50 time steps at t = 4
fm/c. In all figures, the full line
shows the one-dimensional
evolution of matter. The dashed
line shows the two-dimensional
solution in x direction, while the
dotted line shows the solution in
the diagonal x = y direction.
a The collective flow velocity of
matter, v, b the LRF energy
density, e, c the invariant
expansion rate θ , and d the
shear viscous pressure, π

In the simple one-dimensional formulation, there are
only two dissipative quantities to propagate, Π1 and π1,
while the other shear stress tensor components are straight-
forward to calculate. In the two-dimensional setup we al-
ways propagate all non-vanishing dissipative tensor com-
ponents, Π2,π

00
2 ,π0x

2 ,π
0y

2 ,πxx
2 ,π

yy

2 ,π
xy

2 ,πzz
2 . Because

there is only one independent shear stress component π

in the one-dimensional Riemann problem, any of the non-
vanishing shear stress components in the two-dimensional
calculations can be used to extract π . The simplest possibil-
ity is to use π = −2πzz, because πzz is independent of the
orientation of the initial state in the (x, y)-plane.

The result of the comparison between the one- and the
two-dimensional calculations is shown in Fig. 3, where we
compare the velocity v, the LRF energy density e, the ex-
pansion rate θ , and the shear pressure π . The velocity
v = vz in the one-dimensional calculation, while v = vx

or v =
√

v2
x + v2

y in the two-dimensional cases. In the two-

dimensional calculations the quantities are plotted along the
x axis when the initial discontinuity is at x = 0, or along the
y = x line when the discontinuity is in the y = −x plane.

When the initial discontinuity is in the x = 0 plane the
two-dimensional SHASTA reduces essentially to the one-
dimensional one. This is because there are no gradients in
the y direction and vy = 0. Therefore, in this case we expect
very good agreement between the one- and two-dimensional
calculations. This is confirmed in Fig. 3, where the two-
dimensional calculation (dashed line) is basically on top of
the one-dimensional calculation (solid line).

When the initial discontinuity is along the y = −x plane,
there are gradients in both x and y directions and both ve-

locity components vx and vy are non-zero. This calculation
is shown as dotted line in Fig. 3. The agreement with the
(1 + 1)-dimensional results is still very good, although the
two-dimensional algorithm gives somewhat sharper profiles
in the shock region.

The next test compares the (1 + 1)-dimensional solu-
tion in cylindrically symmetric coordinates from Sect. 3.2
against the two-dimensional solution in Cartesian coordi-
nates with cylindrically symmetric initial conditions. This
tests how well the two-dimensional system keeps its symme-
try in time and performs compared to the one-dimensional
counterpart.

The initial discontinuity lies on a circle with radius r0 =
5 fm, with a cell size of �r = 0.2 fm in both cases. The ve-
locity and position in the one-dimensional case is v = vr and

x = r , while in the two-dimensional case v =
√

v2
x + v2

y and

r = √
x2 + y2. The first two-dimensional result compares

the evolution of the system along the x axis, i.e., y = 0,
while the second one does this along the diagonal, x = y.
These are plotted with dashed and dotted lines, respectively,
against the one-dimensional solution (solid line) in Fig. 4.
The other plots show the expansion rate, and the shear stress
tensor components, πzz, r2πφφ , and π0r as calculated from
the different equations in Sects. 3.2 and 3.3.

Similarly as before, the results are nearly the same, how-
ever, differences in the diagonal direction are visible and
more pronounced than along the coordinate axis, due to the
finite resolution. The agreement will obviously get better by
decreasing the cell size and time step.
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Fig. 4 (Color online) The
numerical solution of the
relativistic Riemann problem in
cylindrical geometry, with
η/s = 0.1 on a symmetric grid
with Nx = Ny = 200 cells with
�x = 0.2 fm, after Nt = 50
time steps at t = 4 fm/c. In all
figures, the full line shows the
one-dimensional evolution of
matter. The dashed line shows
the two-dimensional solution in
the x direction, while the dotted
line shows the solution in the
diagonal x = y direction. a The
collective flow velocity of
matter, v, b the LRF energy
density, e, and c the invariant
expansion rate, θ . The shear
stress components πzz , r2πφφ ,
and π0r are shown in panels d,
e, and f, respectively

6 Conclusions

In this paper, we have studied numerical algorithms to solve
the IS theory for relativistic dissipative fluid dynamics. First,
we briefly reviewed the IS theory and wrote the IS equations
for (1 + 1)- and (2 + 1)-dimensional systems in Cartesian
coordinates, and for (1 + 1)-dimensional azimuthally sym-
metric systems in cylindrical coordinates. For the sake of
completeness we present the (3 + 1)-dimensional equations
in Cartesian coordinates and the (2 + 1)-dimensional boost-
invariant and (3 + 1)-dimensional equations in (τ, x, y, η)

coordinates in the Appendices. We also gave a detailed in-
troduction to the FCT-SHASTA method for one and multidi-
mensional applications, together with a brief discussion on
the HRCS methods NT and KT. We also discussed relation-
ship between microscopic and macroscopic scales, as well
as physical limitations for the components of the energy–
momentum tensor.

In our first numerical comparison we solved the (1 + 1)-
dimensional Riemann problem in the perfect-fluid limit.
This problem has an analytic solution which allowed us to
make a definite comparison of performance and accuracy of

the different numerical algorithms. For this problem all the
algorithms considered here, i.e., the NT, KT, and SHASTA
methods, gave very similar results. All of them could repro-
duce the analytic solution with a very high precision with
sufficiently high numerical resolution. Moreover, with the
same resolution the accuracy of the methods was found to
be similar, i.e., none of them showed significantly faster con-
vergence to the analytic solution when the grid spacing was
decreased. For this reason we have chosen SHASTA for all
the other geometries as well as for all calculations with non-
zero viscosity.

We further studied the effect of the mask coefficient
Aad in the SHASTA. This numerical parameter controls the
amount of numerical diffusion in the algorithm. It was found
that a reduction of the coefficient by 20% from the default
value smoothens unphysical sharp structures in the solution,
especially in the expansion rate, and at the same time only
increases the numerical viscosity by a small amount.

In the case of non-zero viscosity, the analytic solution
to the Riemann problem is not known. However, we have
demonstrated earlier that our (1 + 1)-dimensional code is in
good agreement with kinetic-theory calculations [65, 66]. In
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this work we have first applied both (1 + 1)– and (2 + 1)-
dimensional Cartesian implementations of the code to the
same (1 + 1)-dimensional Riemann problem. In this case
we have chosen a non-zero shear viscosity, η/s = 0.1. If the
discontinuity in the initial energy-density profile was cho-
sen to be along one of the coordinate axes, perfect agree-
ment between the one- and the two-dimensional codes was
found. In the case where the initial discontinuity was chosen
to be along the y = −x plane, a slight difference between
the two codes near the shock front was found. The results
were shown for a rather large grid spacing �x = 0.2 fm; the
agreement was found to improve significantly for smaller
grid spacing. A similar comparison between the (1 + 1)-
dimensional solution in cylindrical coordinates versus the
(2 + 1)-dimensional solution in Cartesian coordinates with
cylindrically symmetric initial condition confirmed that our
method works well also for problems in more than one spa-
tial dimension.

In this work, we have demonstrated the applicability of
FCT-SHASTA to solve the conservation equations of causal
relativistic dissipative fluid dynamics simultaneously with
relaxation transport equations. In the future, we intend to
extend this method to full (3 + 1)-dimensional geometries.
We plan a detailed comparison with calculations done in the
framework of kinetic theory [67], as well as studies of col-
lective flow in relativistic heavy-ion collisions.
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Appendix A: (2 + 1)-dimensional boost-invariant
expansion

Because it is very important for modeling ultrarelativistic
heavy-ion collisions, we discuss the (2 + 1)-dimensional
boost-invariant equations of motion. The metric tensors are
gμν = diag(1,−1,−1,−1/τ 2) and gμν = diag(1,−1,−1,

−τ 2), leading to g = τ 2, where τ = (t2 − z2)−1/2 is the
longitudinal proper time and η = 1/2 ln[(t + z)/(t − z)]
is the space-time rapidity (which is not to be confused
with the shear viscosity coefficient). The only non-vanishing
Christoffel symbols are �

η
ητ = �

η
τη = τ−1 and �τ

ηη = τ .
The equations of relativistic dissipative fluid dynamics

can be easily derived from the results in Cartesian coordi-
nates, cf. Sect. 3.3. In order to obtain the equations for the
boost-invariant case, the indices for time t and spatial z di-
rection have to be replaced by τ and η in the four-vector

and tensor components, (0, x, y, z) → (τ, x, y, η). There-
fore, we easily find that all laboratory frame quantities can
be written in the same way as in (94)–(102), with the ex-
ception of the term in (103), which becomes, T zz → T ηη ≡
P/τ 2 + πηη . This means that Nη = 0, T τη = T xη = T yη =
0, and πτη = πxη = πyη = 0.

The LRF charge density, energy density, and velocity are
calculated the same way as in Sect. 3.3. The charge conser-
vation equation is

∂τN
τ + ∂x

(
vxN

τ
) + ∂y

(
vyN

τ
) = − 1

τ
Nτ . (A.1)

The energy conservation equation follows from
1√
g
∂μ(

√
g T μτ ) + �τ

μβT μβ = 0, thus

∂τ T
ττ + ∂x

(
vxT

ττ
) + ∂y

(
vyT

ττ
)

= −∂x

(
vxP −vxπ

ττ + πτx
) − ∂y

(
vyP −vyπ

ττ + πτy
)

− 1

τ

(
T ττ + P + τ 2πηη

)
. (A.2)

The momentum conservation equations follow from
1√
g
∂μ(

√
g T μi) + �i

μβT μβ = 0:

∂τ T
τx + ∂x

(
vxT

τx
) + ∂y

(
vyT

τx
)

= − 1

τ
T τx − ∂x

(
P − vxπ

τx + πxx
)

− ∂y

(−vyπ
τx + πxy

)
, (A.3)

∂τ T
τy + ∂x

(
vxT

τy
) + ∂y

(
vyT

τy
)

= − 1

τ
T τy − ∂x

(−vxπ
τy + πxy

)

− ∂y

(
P − vyπ

τy + πyy
)
. (A.4)

The use of boost-invariant coordinates affects the expansion
rate, θ⊥ = γ⊥/τ + ∂τ γ⊥ + ∂x(γ⊥vx) + ∂y(γ⊥vy), and the
σzz component of the shear tensor, which is replaced by
σηη ≡ τ−2(θ⊥/3 − γ⊥/τ). The convective time derivative
D from Sect. 3.3 becomes D ≡ γ⊥∂τ + γ⊥vx∂x + γ⊥vy∂y .
The relaxation equations are the same as in Cartesian co-
ordinates except for the replacement πzz → πηη which due
to a non-vanishing Christoffel symbol includes a new term,
2πηηγ⊥/τ . Thus,

γ⊥∂tπ
ηη + γ⊥vx∂xπ

ηη + γ⊥vy∂yπ
ηη

= −2πηη γ⊥
τ

+ 1

τπ

(
π

ηη
NS − πηη

) − I
ηη
1 − I

ηη
2 − I

ηη
3 .

(A.5)

Note that in Ref. [29] this extra term was not present
in (5.21a), but correctly added in Ref. [20]. The other re-
laxation equations, together with I0, I

μν
1 , I

μν
2 , and I

μν
3 and

the vorticity tensor components remain formally unchanged.
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(This is so, since all non-vanishing Christoffel symbols are
multiplied with uη = 0.)

Appendix B: (3 + 1)-dimensional expansion
in Cartesian coordinates

This case is very similar to the two-dimensional case dis-
cussed in Sect. 3.3. The only difference is that now the
velocity, spatial derivative, and all four-vector and tensor
components in the z direction are non-zero. The velocity is
uμ = γ (1, vx, vy, vz), where γ = (1 − v2

x − v2
y − v2

z )
−1/2.

Therefore, the new non-vanishing components of the charge
four-current and energy momentum tensor, in addition to
(94)–(96) and (97)–(102) which formally remain the same
with γ⊥ → γ , are

Nz ≡ N0vz, (B.1)

T 0z ≡ (e + P)γ 2vz + π0z, (B.2)

T zz ≡ (e + P)γ 2v2
z + P + πzz, (B.3)

T xz ≡ (e + P)γ 2vxvz + πxz, (B.4)

T yz ≡ (e + P)γ 2vyvz + πyz. (B.5)

The LRF quantities are calculated similarly to the (2 + 1)-
dimensional case, thus

n = N0
√

1 − v2
x − v2

y − v2
z , (B.6)

e = (
T 00 − π00) − vx

(
T 0x − π0x

)
(B.7)

− vy

(
T 0y − π0y

) − vz

(
T 0z − π0z

)
.

While the velocity components in x and y directions remain
the same as in Sect. 3.3, the velocity component in z direc-
tion is

vz = T 0z − π0z

T 00 − π00 + P
. (B.8)

The charge conservation equation is

∂tN
0 + ∂x

(
vxN

0) + ∂y

(
vyN

0) + ∂z

(
vzN

0) = 0. (B.9)

The energy–momentum equations are

∂tT
00 + ∂x

(
vxT

00) + ∂y

(
vyT

00) + ∂z

(
vzT

00)

= −∂x

(
vxP − vxπ

00 + π0x
) − ∂y

(
vyP − vyπ

00 + π0y
)

− ∂z

(
vzP − vzπ

00 + π0z
)
, (B.10)

∂tT
0x + ∂x

(
vxT

0x
) + ∂y

(
vyT

0x
) + ∂z

(
vzT

0x
)

= −∂x

(
P − vxπ

0x + πxx
) − ∂y

(−vyπ
0x + πxy

)

− ∂z

(−vzπ
0x + πxz

)
, (B.11)

∂tT
0y + ∂x

(
vxT

0y
) + ∂y

(
vyT

0y
) + ∂z

(
vzT

0y
)

= −∂x

(−vxπ
0y + πxy

) − ∂y

(
P − vyπ

0y + πyy
)

− ∂z

(−vzπ
0y + πyz

)
, (B.12)

∂tT
0z + ∂x

(
vxT

0z
) + ∂y

(
vyT

0z
) + ∂z

(
vzT

0z
)

= −∂x

(−vxπ
0z + πxz

) − ∂y

(−vyπ
0z + πyz

)

− ∂z

(
P − vzπ

0z + πzz
)
. (B.13)

The relaxation equations are formally similar to (119),
(120), only the z-directed derivatives γ vz∂zΠ and γ vz∂zπ

μν

have to be added. Therefore, the new components of the
shear tensor are

σ 0z = 1

2

[
∂t (γ vz) − ∂zγ

]

− 1

2

[
γD(γ vz) + γ vzDγ

] + γ 2vz

θ

3
, (B.14)

σzz = −∂z(γ vz) − γ vzD(γ vz) + (
1 + γ 2v2

z

)θ

3
, (B.15)

σxz = −1

2

[
∂x(γ vz) + ∂z(γ vx)

]

− 1

2

[
γ vxD(γ vz) + γ vzD(γ vx)

] + γ 2vxvz

θ

3
,

(B.16)

σyz = −1

2

[
∂y(γ vz) + ∂z(γ vy)

]

− 1

2

[
γ vyD(γ vz) + γ vzD(γ vy)

] + γ 2vyvz

θ

3
,

(B.17)

where the expansion scalar is θ = ∂tγ + ∂x(γ vx) +
∂y(γ vy) + ∂z(γ vz), and the convective time derivative is
D ≡ uμ∂μ = γ ∂t + γ vx∂x + γ vy∂y + γ vz∂z. The form of
the other components does not change in comparison with
(121)–(126).

The term I
μν
1 = (πλμuν + πλνuμ)Duλ leads to

I 00
1 = 2γ

[
π00Dγ − π0xD(γ vx) − π0yD(γ vy)

− π0zD(γ vz)
]
, (B.18)

I 0x
1 = γ

[(
π00vx + π0x

)
Dγ − (

π0xvx + πxx
)
D(γ vx)

− (
π0yvx + πxy

)
D(γ vy)

− (
π0zvx + πxz

)
D(γ vz)

]
, (B.19)

I
0y

1 = γ
[(

π00vy + π0y
)
Dγ − (

π0xvy + πxy
)
D(γ vx)

− (
π0yvy + πyy

)
D(γ vy)

− (
π0zvy + πyz

)
D(γ vz)

]
, (B.20)
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I 0z
1 = γ

[(
π00vz + π0z

)
Dγ − (

π0xvz + πxz
)
D(γ vx)

− (
π0yvz + πyz

)
D(γ vy)

− (
π0zvz + πzz

)
D(γ vz)

]
, (B.21)

I xx
1 = 2γ vx

[
π0xDγ − πxxD(γ vx) − πxyD(γ vy)

− πxzD(γ vz)
]
, (B.22)

I
yy

1 = 2γ vy

[
π0yDγ − πxyD(γ vx) − πyyD(γ vy)

− πyzD(γ vz)
]
, (B.23)

I zz
1 = 2γ vz

[
π0zDγ − πxzD(γ vx) − πyzD(γ vy)

− πzzD(γ vz)
]
, (B.24)

I
xy

1 = γ
[(

π0xvy + π0yvx

)
Dγ − (

πxxvy + πxyvx

)
D(γ vx)

− (
πxyvy + πyyvx

)
D(γ vy)

− (
πxzvy + πyzvx

)
D(γ vz)

]
, (B.25)

I xz
1 = γ

[(
π0xvz + π0zvx

)
Dγ − (

πxxvz + πxzvx

)
D(γ vx)

− (
πxyvz + πyzvx

)
D(γ vy)

− (
πxzvz + πzzvx

)
D(γ vz)

]
, (B.26)

I
yz

1 = γ
[(

π0yvz + π0zvy

)
Dγ − (

πxyvz + πxzvy

)
D(γ vx)

− (
πyyvz + πyzvy

)
D(γ vy)

− (
πyzvz + πzzvy

)
D(γ vz)

]
. (B.27)

The terms I0 and I
μν
2 are given by (21) and (23). The new

components which need to be computed compared to the
previous case are I 0z

2 , I xz
2 , I

yz

2 , and I zz
2 . The non-vanishing

components of the last term are

I 00
3 = 2

(
π0xω0

x + π0yω0
y + π0zω0

z

)
, (B.28)

I 0x
3 = π00ωx

0 + π0yωx
y + π0zωx

z

+ πxxω0
x + πxyω0

y + πxzω0
z, (B.29)

I
0y

3 = π00ω
y

0 + π0xω
y
x + π0zω

y
z

+ πxyω0
x + πyyω0

y + πyzω0
z, (B.30)

I 0z
3 = π00ωz

0 + π0xωz
x + π0yωz

y

+ πxzω0
x + πyzω0

y + πzzω0
z, (B.31)

I xx
3 = 2

(
π0xωx

0 + πxyωx
y + πxzωx

z

)
, (B.32)

I
yy

3 = 2
(
π0yω

y

0 + πxyω
y
x + πyzω

y
z

)
, (B.33)

I zz
3 = 2

(
π0zωz

0 + πxzωz
x + πyzωz

y

)
, (B.34)

I
xy

3 = π0xω
y

0 + πxxω
y
x + πxzω

y
z

+ π0yωx
0 + πyyωx

y + πyzωx
z, (B.35)

I xz
3 = π0xωz

0 + πxxωz
x + πxyωz

y

+ π0zωx
0 + πyzωx

y + πzzωx
z, (B.36)

I
yz

3 = π0yωz
0 + πxyωz

x + πyyωz
y

+ π0zω
y

0 + πxzω
y
x + πzzω

y
z, (B.37)

where the new vorticity tensor components are

ω0
z = 1

2

[
∂zγ + ∂t (γ vz) + γ vzDγ − γD(γ vz)

]
, (B.38)

ωx
z = 1

2

[
∂z(γ vx) − ∂x(γ vz)

]

+ 1

2

[
γ vzD(γ vx) − γ vxD(γ vz)

]
, (B.39)

ω
y
z = 1

2

[
∂z(γ vy) − ∂y(γ vz)

]

+ 1

2

[
γ vzD(γ vy) − γ vyD(γ vz)

]
, (B.40)

such that ω0
z = ωz

0 = −ω0z = ω0z, ωx
z = −ωz

x = −ωxz =
−ωxz and ω

y
z = −ωz

y = −ωyz = −ωyz. The other compo-
nents are given in (140)–(142) where one has to replace γ⊥
with γ .

Appendix C: (3 + 1)-dimensional expansion
in (τ,x,y,η) coordinates

The metric of the space-time is the same as in Appendix A,
only the definition of the flow velocity changes. In this case
the contravariant flow velocity is uμ = γ (1, vx, vy, vη), and
the covariant flow velocity is uμ = gμνu

ν = γ (1,−vx,−vy,

−τ 2vη), where γ = (1−v2
x −v2

y −τ 2v2
η)

−1/2. The gradients
are, ∂μ = (∂τ , ∂x, ∂y, ∂η) and ∂μ ≡ gμν∂ν = (∂τ ,−∂x,−∂y,

−τ−2∂η).
Similarly as before the equations can be easily obtained

from the ones found in Cartesian coordinates in Appendix B.
All laboratory frame quantities are formally the same, ex-
cept for T zz → T ηη ≡ (e+P)γ 2v2

η +P/τ 2 +πηη. The LRF
quantities are

n = N0
√

1 − v2
x − v2

y − τ 2v2
η, (C.1)

e = (
T 00 − π00) − vx

(
T 0x − π0x

)

− vy

(
T 0y − π0y

) − τ 2vη

(
T 0η − π0η

)
. (C.2)

The velocity components vx and vy are given by (106),
(107), the velocity component in η-direction is given sim-
ilarly as in (B.8). The charge conservation equation is given
by
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∂τN
τ + ∂x

(
vxN

τ
) + ∂y

(
vyN

τ
) + ∂η

(
vηN

τ
)

= − 1

τ
Nτ . (C.3)

The equation for energy–momentum conservation leads to

∂τ T
ττ + ∂x

(
vxT

ττ
) + ∂y

(
vyT

ττ
) + ∂η

(
vηT

ττ
)

= −∂x

(
vxP − vxπ

ττ + πτx
) − ∂y

(
vyP − vyπ

ττ + πτy
)

− ∂η

(
vηP − vηπ

ττ + πτη
) − 1

τ

(
T ττ + τ 2T ηη

)
,

(C.4)

∂τ T
τx + ∂x

(
vxT

τx
) + ∂y

(
vyT

τx
) + ∂η

(
vηT

τx
)

= −∂x

(
P − vxπ

τx + πxx
) − ∂y

(−vyπ
τx + πxy

)

− ∂y

(−vηπ
τx + πxη

) − 1

τ
T τx, (C.5)

∂τ T
τy + ∂x

(
vxT

τy
) + ∂y

(
vyT

τy
) + ∂η

(
vηT

τy
)

= −∂x

(−vxπ
τy + πxy

) − ∂y

(
P − vyπ

τy + πyy
)

− ∂η

(−vηπ
τy + πyη

) − 1

τ
T τy, (C.6)

∂τ T
τη + ∂x

(
vxT

τη
) + ∂y

(
vyT

τη
) + ∂η

(
vηT

τη
)

= −∂x

(−vxπ
τη + πxη

) − ∂y

(−vyπ
τη + πyη

)

− ∂η

(
P

τ 2
− vηπ

τη + πηη

)
− 3

τ
T τη. (C.7)

The relaxation equations for the bulk viscous pressure and
the shear stress tensor components πxx,πyy,πxy are for-
mally the same as in Cartesian coordinates, however, for the
other components we obtain

Dπττ = −2τγ vηπ
τη + I ττ , (C.8)

Dπτx = −τγ vηπ
xη + I τx, (C.9)

Dπτy = −τγ vηπ
yη + I τy, (C.10)

Dπτη = −τγ vηπ
ηη − γ

τ
πτη − γ vη

τ
πττ + I τη, (C.11)

Dπxη = −γ

τ
πxη − γ vη

τ
πτx + I xη, (C.12)

Dπyη = −γ

τ
πyη − γ vη

τ
πτy + I yη, (C.13)

Dπηη = −2
γ

τ
πηη − 2

γ vη

τ
πτη + Iηη, (C.14)

where Iμν denotes the right-hand side of (18), but in this
case D = γ ∂τ + γ vx∂x + γ vy∂y + γ vη∂η denotes the con-
vective time derivative of scalars.

The shear tensor components σxx, σ yy , and σxy remain
formally unchanged from (124), (125), (126), while the ones
which are different are calculated from (9),

σ ττ = −τγ 3v2
η + ∂τ γ − γDγ + (

γ 2 − 1
)θ

3
, (C.15)

σ τx = −τγ 3v2
ηvx

2
+ 1

2

[
∂τ (γ vx) − ∂xγ

]

− 1

2

[
γD(γ vx) + γ vxDγ

] + γ 2vx

θ

3
, (C.16)

σ τy = −τγ 3v2
ηvy

2
+ 1

2

[
∂τ (γ vy) − ∂yγ

]

− 1

2

[
γD(γ vy) + γ vyDγ

] + γ 2vy

θ

3
, (C.17)

σ τη = −γ 3vη

2τ

(
2 + τ 2v2

η

) + 1

2

[
∂τ (γ vη) − 1

τ 2
∂ηγ

]

− 1

2

[
γD(γ vη) + γ vηDγ

] + γ 2vη

θ

3
, (C.18)

σηη = − γ

τ 3

(
1 + 2γ 2v2

ητ
2) − 1

τ 2
∂η(γ vη)

− γ vηD(γ vη) +
(

1

τ 2
+ γ 2v2

η

)
θ

3
, (C.19)

σxη = −γ 3vxvη

τ
− 1

2

[
∂x(γ vη) + 1

τ 2
∂η(γ vx)

]

− 1

2

[
γ vxD(γ vη) + γ vηD(γ vx)

] + γ 2vxvη

θ

3
,

(C.20)

σyη = −γ 3vyvη

τ
− 1

2

[
∂y(γ vη) + 1

τ 2
∂η(γ vy)

]

− 1

2

[
γ vyD(γ vη) + γ vηD(γ vy)

] + γ 2vyvη

θ

3
,

(C.21)

where the expansion scalar is θ = γ /τ + ∂tγ + ∂x(γ vx) +
∂y(γ vy) + ∂η(γ vη). The I0, I

μν
1 , I

μν
2 , and I

μν
3 components

remain formally the same. The new vorticity tensor compo-
nents are

ωτ
η = 1

2

[
∂ηγ + ∂τ

(
τ 2γ vη

)]

+ 1

2

[
τ 2γ vηDγ − γD

(
τ 2γ vη

)]
, (C.22)

ωx
η = 1

2

[
∂η(γ vx) − ∂x

(
τ 2γ vη

)]

+ 1

2

[
τ 2γ vηD(γ vx) − γ vxD

(
τ 2γ vη

)]
, (C.23)

ωy
η = 1

2

[
∂η(γ vy) − ∂y

(
τ 2γ vη

)]

+ 1

2

[
τ 2γ vηD(γ vy) − γ vyD

(
τ 2γ vη

)]
, (C.24)

where ωτ
η = ω

η
τ , ωx

η = −ω
η
x and ω

y
η = −ω

η
y .
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